Matematika Dasar Aturan Perkalian, Permutasi dan Kombinasi (👊 Soal dari Berbagai Sumber 👊)
Aturan Penjumlahan
Apabila kegiatan 1, kegiatan 2, sampai kegiatan ke-n adalah kegiatan-kegiatan yang saling lepas, dan misalkan kegiatan 1 terjadi dengan $n_{1}$ cara, kegiatan 2 terjadi dengan $n_{2}$ dan kegiatan ke-n terjadi dengan $n_{k}$ cara, maka banyak kegiatan tersebut akan terjadi sebanyak $n_{1}+n_{2}+ \cdots +n_{k}$.Aturan Perkalian
Apabila kegiatan 1, kegiatan 2, sampai kegiatan ke-n adalah kegiatan-kegiatan yang tidak saling lepas, dan misalkan kegiatan 1 terjadi dengan $n_{1}$ cara, kegiatan 2 terjadi dengan $n_{2}$ dan kegiatan ke-n terjadi dengan $n_{k}$ cara, maka banyak kegiatan tersebut akan terjadi sebanyak $n_{1} \times n_{2} \times \cdots \times n_{k}$.Faktorial
Faktorial dilambangkan dengan tanda seru "$!$" pertama kali diperkenalkan pada tahun 1808 oleh Christian Kramo (1760-1826) di Strasbourg, Prancis. Beliau mengunakan simbol ini untuk menghindari kesulitan pencetakan yang disebabkan simbol yang digunakan sebelumnya.$n!$ dibaca "$n$ faktorial" didefenisikan:
$n!=n \times (n-1) \times (n-2) \times (n-3) \times \cdots \times 1 $
dimana $n$ adalah bilangan asli dan $0!=1$.
Permutasi
Permutasi adalah suatu susunan dari $n$ elemen berbeda tanpa ada elemen yang boleh diulang. Dalam permutasi urutan sangat diperhatikan. Banyak permutasi $r$ elemen dari $n$ elemen berbeda diberi notasi $P(n,r)$ atau $P_{r}^{n}$ atau $_{n}P_{r}$ dimana $r \leq n$.$P(n,r)=\dfrac{n!}{(n-r)!}$
Permutasi Melingkar
Permutasi Melingkar adalah suatu susunan dari $n$ elemen berbeda tanpa ada elemen yang boleh diulang dimana dalam keadaan melingkar.Banyak permutasi melingkar dari $n$ elemen berbeda diberi notasi $P(n,siklis)$ atau $P_{siklis}^{n}$ atau $_{n}P_{siklis}$.
$P_{siklis}^{n}=(n-r)!$
Permutasi ada unsur yang sama
Permutasi ada unsur yang sama adalah suatu susunan dari $n$ elemen dimana ada beberapa unsur yang sama dari unsur-unsur yang akan disusun.Banyak permutasi ada unsur yang sama dari $n$ elemen dimana unsur-unsur yang sama adalah $n_{1},n_{2},n_{k}$ diberi notasi $P(n,n_{1},n_{2},n_{k})$ atau $P_{n_{1},n_{2},n_{k}}^{n}$ atau $_{n}P_{n_{1},n_{2},n_{k}}$, dimana $n_{1}+n_{2}+n_{k} \leq n$
$P_{n_{1},n_{2},n_{k}}^{n}=\dfrac{n!}{n_{1}! \times n_{2}! \times n_{k}!}$
Kombinasi
Kombinasi adalah suatu susunan dari $n$ elemen berbeda dimana urutan tidak diperhatikan. Banyak kombinasi $r$ elemen dari $n$ elemen berbeda diberi notasi $C(n,r)$ atau $C_{r}^{n}$ atau $_{n}C_{r}$ atau $\binom{n}{r}$ dimana $r \leq n$.$C(n,r)=\binom{n}{r}=\dfrac{n!}{r!(n-r)!}$
Teorema Binomial untuk bilangan bulat positif $n$
$(a+b)^n=a^{n}+\binom{n}{1}a^{n-1}b+\binom{n}{2}a^{n-2}b^{2}+\binom{n}{3}a^{n-3}b^{3}+\cdots+b^{n}$
Contoh-contoh dari apa yang disampaikan diatas dapat kita lihat pada soal-soal berikut, dimana soal bersumber dari soal ujian sekolah, ujian nasional atau ujian masuk perguruan tinggi negeri/swasta. Mari kita simak contoh SoalnyaðŸ˜Å
Mari kita simak contoh Soal dan Pembahasan Matematika Dasar Aturan Perkalian, Permutasi dan Kombinasi berikut ðŸ˜Å
1. Soal SBMPTN 2017 (👊 Soal Lengkap 👊)
Banyak susunan berfoto berjajar untuk 3 pasang pemain bulutangkis ganda dengan tidak ada setiap pemain dan pasangannya berdekatan adalah...
$\begin{align}
(A)\ & 720 \\
(B)\ & 705 \\
(C)\ & 672 \\
(D)\ & 48 \\
(E)\ & 15
\end{align}$
Untuk menyelesaikan soal diatas kita coba dengan menyederhanakan masalahnya menjadi:
Banyak susunan berfoto berjajar untuk 3 pasang pemain bulutangkis ganda dengan posisi berfoto bebas adalah:
$6 \times 5 \times 4 \times \cdots \times 1=6!=720$
Banyak susunan berfoto berjajar untuk 3 pasang pemain bulutangkis ganda dengan posisi berfoto setiap pasangan ganda harus berdekatan. Dengan menganggap satu pasangan adalah "satu" unsur maka unsur yang akan disusun adalah "tiga" dan setiap pasangan berdekatan ada $2!$ posisi yang mungkin terjadi sehingga banyak posisi berfoto adalah:
$3 \times 2 \times 1 \times 2! \times 2! \times 2!=48$
Banyak susunan berfoto berjajar untuk 3 pasang pemain bulutangkis ganda dengan tidak setiap pemain dan pasangannya berdekatan adalah banyak posisi berfoto posisi bebas dikurang posisi foto harus berdekatan yaitu $720-48=672$
$\therefore$ Pilihan yang sesuai $(C)\ 672$
2. Soal SBMPTN 2017 (👊 Soal Lengkap 👊)
Jika dua truk dan tiga bus akan diparkir pada lima tempat parkir yang berderet memanjang serta kedua truk yang diparkir tidak bersebelahan, maka banyak susunan parkir berbeda adalah...
$\begin{align}
(A)\ & 42 \\
(B)\ & 52 \\
(C)\ & 62 \\
(D)\ & 72 \\
(E)\ & 82
\end{align}$
Untuk menyelesaikan soal diatas kita coba dengan menyederhanakan masalahnya menjadi:
Banyak susunan parkir untuk 5 mobil dengan posisi parkir bebas adalah:
$5 \times 4 \times 3 \times \cdots \times 1=5!=120$
Banyak susunan parkir untuk 5 mobil dimana 2 mobil truk harus berdekatan. Dengan menganggap dua mobil truk adalah "satu" unsur maka unsur yang akan disusun adalah "empat" dan saat posisi truk berdekatan ada $2!$ posisi yang mungkin terjadi, sehingga banyak posisi parkir adalah:
$4 \times 3 \times 2 \times 1 \times 2! =48$
Banyak susunan parkir untuk 5 mobil dimana 2 mobil truk tidak berdekatan adalah banyak posisi parkir posisi bebas dikurang posisi parkir dimana truk harus berdekatan yaitu $120-48=72$
$\therefore$ Pilihan yang sesuai $(D)\ 72$
3. Soal SBMPTN 2018 (👊 Soal Lengkap 👊)
Ari dan Ira merupakan anggota dari suatu kelompok yang terdiri dari $9$ orang. Banyaknya cara membuat barisan satu bersaf sengan syarat Ari dan Ira tidak berdampingan adalah...
$\begin{align}
(A)\ & 5 \times 8! \\
(B)\ & 6 \times 8! \\
(C)\ & 7 \times 8! \\
(D)\ & 6 \times 7! \\
(E)\ & 7 \times 7!
\end{align}$
Untuk menyelesaikan soal diatas kita coba dengan menyederhanakan masalahnya menjadi:
Banyak susunan baris untuk 9 orang dengan posisi bebas adalah:
$9 \times 8 \times 7 \times \cdots \times 1=9!$
Banyak susunan baris untuk 9 orang dimana 2 orang Ari dan Ira harus berdekatan. Dengan menganggap Ari dan Ira adalah "satu" unsur maka unsur yang akan disusun adalah "delapan" dan saat posisi Ari dan Ira berdekatan ada dua posisi yang mungkin terjadi, sehingga banyak posisi baris adalah:
$8 \times 7 \times 6 \times \cdots \times 1 \times 2=8! \times 2$
Banyak susunan baris untuk 9 orang dimana Ari dan Ira tidak berdekatan adalah banyak susunan baris posisi bebas dikurang susunan baris dimana Ari dan Ira harus berdekatan yaitu:
$\begin{align}
9!-8! \times 2 = & 9 \times 8!-8! \times 2 \\
= & 8! \times (9-2) \\
= & 8! \times 7
\end{align}$
$\therefore$ Pilihan yang sesuai $(C)\ 7 \times 8!$
4. Soal SBMPTN 2016 (👊 Soal Lengkap 👊)
Tujuh finalis lomba menyayi tingkat SMA di suatu kota berasal dari 6 SMA yang berbeda terdiri atas empat pria dan tiga wanita. Diketahui satu pria dan satu wanita berasal dari SMA "A". Jika urutan tampil diatur bergantian antara pria dan wanita, serta finalis dari SMA "A" tidak tampil berurutan, maka susunan tampil yang mungkin ada sebanyak...
$\begin{align}
(A)\ & 144 \\
(B)\ & 108 \\
(C)\ & 72 \\
(D)\ & 36 \\
(E)\ & 35
\end{align}$
Untuk menyelesaikan soal diatas kita coba dengan menyederhanakan masalahnya menjadi:
Banyak susunan urutan menyanyi 7 orang dengan urutan pria dan wanita bergantian adalah:
$\begin{array}{c|c|c|c|c|c|cc}
P & W & P & W & P & W & P \\
\hline
4 & 3 & 3 & 2 & 2 & 1 & 1 \end{array} $
Banyak susunan urutan adalah $4 \times 3 \times 3\times 2\times 2\times 1\times 1 = 144$
Banyak susunan urutan menyanyi 7 orang dengan urutan pria dan wanita bergantian tetapi pria dan wanita dari SMA "A" harus berurutan. Dengan menganggap pria dan wanita dari SMA "A" adalah "satu" orang, maka susunan urutan yang menyanyi sekarang adalah "tiga" kelompok. Kelompok pria (3 orang), kelompok wanita (2 orang) dan kelompok SMA "A" (1 orang). Susunan urutannya adalah:
$3! \times 3! \times 2! \times 1!=6 \times 6 \times 2 \times 1 =72 $
Jika kita jabarkan urutan menyanyi kurang lebih seperti berikut ini:
$\begin{array}{c|c|c|c|c|c|cc}
P_{A} & W_{A} & P & W & P & W & P \\
\hline
1 & 1 & 3 & 2 & 2 & 1 & 1 \end{array} $
Banyak susunan urutan adalah $1 \times 1 \times 3\times 2\times 2\times 1\times 1 = 12$
$\begin{array}{c|c|c|c|c|c|cc}
P_{A} & W_{A} & P & W & P & W & P \\
\hline
1 & 1 & 3 & 2 & 2 & 1 & 1 \end{array} $
Banyak susunan urutan adalah $1 \times 1 \times 3\times 2\times 2\times 1\times 1 = 12$
$\begin{array}{c|c|c|c|c|c|cc}
P & W_{A} & P_{A} & W & P & W & P \\
\hline
3 & 1 & 1 & 2 & 2 & 1 & 1 \end{array} $
Banyak susunan urutan adalah $3 \times 1 \times 1 \times 2\times 2\times 1\times 1 = 12$
$\begin{array}{c|c|c|c|c|c|cc}
P & W & P_{A} & W_{A} & P & W & P \\
\hline
3 & 2 & 1 & 1 & 2 & 1 & 1 \end{array} $
Banyak susunan urutan adalah $3 \times 2 \times 1 \times 1 \times 2 \times 1 \times 1 = 12$
$\begin{array}{c|c|c|c|c|c|cc}
P & W & P & W_{A} & P_{A} & W & P \\
\hline
3 & 2 & 2 & 1 & 1 & 1 & 1 \end{array} $
Banyak susunan urutan adalah $3 \times 2 \times 2 \times 1 \times 1 \times 1 \times 1 = 12$
$\begin{array}{c|c|c|c|c|c|cc}
P & W & P & W & P_{A} & W_{A} & P \\
\hline
3 & 2 & 2 & 1 & 1 & 1 & 1 \end{array} $
Banyak susunan urutan adalah $3 \times 2 \times 2 \times 1 \times 1 \times 1 \times 1 = 12$
$\begin{array}{c|c|c|c|c|c|cc}
P & W & P & W & P & W_{A} & P_{A} \\
\hline
3 & 2 & 2 & 1 & 1 & 1 & 1 \end{array} $
Banyak susunan urutan adalah $3 \times 2 \times 2 \times 1 \times 1 \times 1 \times 1 = 12$
Total banyak susunan urutan dimana urutan pria dan wanita bergantian tetapi pria dan wanita dari SMA "A" harus berurutan adalah $6 \times 12=72$
Banyak susunan urutan tampil dimana finalis dari SMA "A" tidak tampil berurutan adalah $144-72=72$
$\therefore$ Pilihan yang sesuai $(C)\ 72$
5. Soal SBMPTN 2016 (👊 Soal Lengkap 👊)
Banyaknya bilangan genap $n=abc$ dengan $3$ digit sehingga $3 \lt b \lt c$ adalah...
$\begin{align}
(A)\ & 48 \\
(B)\ & 54 \\
(C)\ & 60 \\
(D)\ & 64 \\
(E)\ & 72
\end{align}$
Bilangan genap $abc$ yang akan disusun dari angka $0,1,2,\cdots,8,9$ dengan syarat $3 \lt b \lt c$
$\begin{array}{c|c|cc}
a & b & c \\
\hline
(1) & (4) & (6,8) \end{array} $
Banyak susunan urutan adalah $1 \times 1 \times 2 = 2$
$\begin{array}{c|c|cc}
a & b & c \\
\hline
(1) & (5) & (6,8) \end{array} $
Banyak susunan urutan adalah $1 \times 1 \times 2 = 2$
$\begin{array}{c|c|cc}
a & b & c \\
\hline
(1) & (6) & (8) \end{array} $
Banyak susunan urutan adalah $1 \times 1 \times 1 = 1$
$\begin{array}{c|c|cc}
a & b & c \\
\hline
(1) & (7) & (8) \end{array} $
Banyak susunan urutan adalah $1 \times 1 \times 1 = 1$
Total bilangan genap $abc$ yang dapat dibentuk dengan ratusan $1$ adalah $2+2+1+1=6$.
Karena untuk ratusan ($a$) angka yang mungkin ada $9$ yaitu $1,2,\cdots,8,9$ maka banyak bilangan genap $abc$ adalah $9 \times 6=54$
$\therefore$ Pilihan yang sesuai $(D)\ 54$
6. Soal SIMAK UI 2016 (👊 Soal Lengkap 👊)
Banyak susunan huruf berbeda yang dapat dibuat dari semua huruf pada kata $SIMAKUI$ apabila huruf $I$ harus selalu berdekatan adalah...
$\begin{align}
(A)\ & 432 \\
(B)\ & 312 \\
(C)\ & 240 \\
(D)\ & 164 \\
(E)\ & 720
\end{align}$
Susunan huruf berbeda yang dapat dibuat dari semua huruf pada kata $SIMAKUI$ apabila huruf $I$ harus selalu berdekatan dapat kita tentukan dengan menganggap "I" adalah "satu" sehingga banyak huruf yang kan disusun tinggal "enam".
Banyak susunan huruf adalah
$\begin{array}{c|c|c|c|c|cc}
II & S & M & A & K & U \\
\hline
6 & 5 & 4 & 3 & 2 & 1
\end{array} $
Banyak susunan adalah $6 \times 5 \times 4 \times 3 \times 2 \times 1= 720$, untuk kasus ini tidak kita kali $2!$ karena jika $II$ bertukar posisi hasilnya adalah posisi yang sama.
$\therefore$ Pilihan yang sesuai $(E)\ 720$
7. Soal SIMAK UI 2015 (👊 Soal Lengkap 👊)
Sebuah kantin menyediakan sebuah menu makanan penutup di setiap harinya, yaitu salah satu dari es krim, puding ata pancake. Khusus hari sabtu, hanya menyediakan es krim. Makanan penutup yang sama tidak akan tersedia dalam dua hari berurutan. Banyaknya kemungkinan susunan menu makanan penutup dalam satu minggu adalah...
$\begin{align}
(A)\ & 64 \\
(B)\ & 128 \\
(C)\ & 216 \\
(D)\ & 729 \\
(E)\ & 2187
\end{align}$
Banyaknya kemungkinan susunan menu makanan antara es krim, puding atau pancake dengan syarat hari sabtu hanya menyediakan es krim dan makanan penutup yang sama tidak akan tersedia dalam dua hari berurutan. Coba kita selesaikan dengan memeulai dari hal yang khsusus yaitu hari sabtu.
$\begin{array}{c|c|c|c|c|c|cc}
Se & Se & Ra & Ka & Ju & Sa & Mi \\
\hline
* & * & * & * & * & 1 & * \end{array} $
Banyak kemungkinan pilihan makanan penutup pada hari sabtu hanya satu yaitu es krim.
Dari syarat yang di atas, untuk hari Jumat dan Minggu hanya ada $2$ kemungkinan pilihan makanan pentup.
$\begin{array}{c|c|c|c|c|c|cc}
Se & Se & Ra & Ka & Ju & Sa & Mi \\
\hline
* & * & * & * & (2) & (1) & (2) \end{array} $
Jika kita teruskan apa yang sudah kita peroleh di atas, maka untuk hari berikutnya Kamis, Rabu, Selasa, Senin juga hanya ada $2$ pilahan makanan penutup karena makanan penutup yang sama tidak akan tersedia dalam dua hari berurutan.
$\begin{array}{c|c|c|c|c|c|cc}
Se & Se & Ra & Ka & Ju & Sa & Mi \\
\hline
(2) & (2) & (2) & (2) & (2) & (1) & (2) \end{array} $
Banyak kemungkinan pilihan makanan penutup adalah $2 \times 2 \times 2 \times 2 \times 2 \times 1 \times 2 = 64$
$\therefore$ Pilihan yang sesuai $(A)\ 64$
8. Soal SIMAK UI 2010 (👊 Soal Lengkap 👊)
Nomor pegawai pada suatu pabrik terdiri atas tiga angka dengan angka pertama bukan nol. Banyak nomor pegawai yang ganjil adalah...
$\begin{align}
(A)\ & 64 \\
(B)\ & 85 \\
(C)\ & 450 \\
(D)\ & 425 \\
(E)\ & 324
\end{align}$
Nomor pegawai pada suatu pabrik terdiri atas tiga angka dengan angka pertama bukan nol yang akan disusun dari angka $0,1,2, \cdots 8, 9$.
$\begin{array}{c|c|cc}
Ratusan & Puluhan & Satuan \\
\hline
(9) & (10) & (5) \end{array} $
Banyak nomor pegawai yang ganjil adalah: $9 \times 10 \times 5 = 450$
$\therefore$ Pilihan yang sesuai $(C)\ 450$
9. Soal SIMAK UI 2010 (👊 Soal Lengkap 👊)
Dari huruf-huruf $S, I, M, A, K$ akan disusun kata-kata yang tidak selalu bermakna. Banyak kata-kata jika huruf vokal selalu berdampingan adalah...
$\begin{align}
(A)\ & 24 \\
(B)\ & 48 \\
(C)\ & 60 \\
(D)\ & 120 \\
(E)\ & 192
\end{align}$
Untuk menyelesaikan masalah diatas kita coba dengan menyederhanakan masalahnya dengan menganggap $I$ dan $A$ adalah "satu" unsur.
Banyak susunan $S, I, M, A, K$ untuk vokal selalu berdampingan. Dengan menganggap $I$ dan $A$ adalah "satu" unsur maka unsur yang akan disusun adalah "empat" dan saat posisi $I$ dan $A$ berdekatan ada $2!$ susunan yang mungkin terjadi, sehingga banyak susunan kata adalah:
$4 \times 3 \times 2 \times 1 \times 2!=48$
$\therefore$ Pilihan yang sesuai $(C)\ 48$
10. Soal SIMAK UI 2010 (👊 Soal Lengkap 👊)
Andi dan Budi pergi menonton konser musik di suatu stadion yang mempunyai $8$ pintu. Mereka masuk dari pintu yang sama, tetapi keluar dari pintu yang berbeda. Banyaknya cara yang dapat mereka lakukan adalah...
$\begin{align}
(A)\ & 28 \\
(B)\ & 224 \\
(C)\ & 444 \\
(D)\ & 484 \\
(E)\ & 896
\end{align}$
Pada soal diatas dikatakan bahwa Andi dan Budi masuk dari pintu yang sama sehingga pilihan pintu ada $8$ dan keluar dari pintu yang berbeda sehingga ada $8$ pilihan untuk yang memilih pintu keluar pertama dan $7$ pilihan untuk orang yang memilih belakangan.
$\begin{array}{c|c|cc}
masuk & keluar & keluar \\
\hline
(8) & (8) & (7) \end{array} $
Banyak cara adalah $8 \times 8 \times 7 = 448$
$\therefore$ Pilihan yang sesuai $(B)\ -1$
11. Soal UNBK Matematika IPA 2018 (👊 Soal Lengkap 👊)
Panitia lomba olimpiade matematika membuat nomor peserta yang disusun dari angka $1,\ 3,\ 3,\ 4,\ \text{dan}\ 7$. Jika nomor-nomor tersebut disusun berdasarkan kodenya mulai dari yang terkecil sampai dengan yang terbesar, nomor peserta $43137$ berada pada urutan ke-...
$(A)\ 40$
$(B)\ 42$
$(C)\ 44$
$(D)\ 85$
$(E)\ 86$
Dari angka $1,\ 3,\ 3,\ 4,\ \text{dan}\ 7$ akan disusun sebuah nomor yang berurutan dari terkecil sampai yang terbesar.
Dimulai dari yang terkecil;
Jika angka $1$ didepan angka berikutnya $3,\ 3,\ 4,\ \text{dan}\ 7$, banyak kemungkinan susunan adalah memakai permutasi jika ada unsur yang sama.
$P_{(p,q,r)}^{n}=\frac{n!}{p!\cdot q! \cdot r!}$
$P_{(2,1,1)}^{4}=\frac{4!}{2!\cdot 1! \cdot 1!}=\frac{24}{2}=12$
Jika angka $3$ didepan angka berikutnya $1,\ 3,\ 4,\ \text{dan}\ 7$, banyak kemungkinan susunan adalah memakai permutasi tidak ada unsur yang sama.
$P_{r}^{n}=\frac{n!}{(n-r)!}$
$P_{4}^{4}=\frac{4!}{(4-4)!}=24$
Jika angka $41$ didepan angka berikutnya $3,\ 3,\ \text{dan}\ 7$, banyak kemungkinan susunan adalah memakai permutasi jika ada unsur yang sama.
$P_{(2,1)}^{3}=\frac{3!}{2!\cdot 1!}$
$P_{(2,1)}^{3}=\frac{6}{2}=3$
Jika angka $43$ didepan angka berikutnya $1$, $3$ dan $7$,
Kita sudah sampai pada susunan $43137$, yang berada pada urutan ke- $12+24+3+1=40$
$\therefore$ Pilihan yang sesuai $(A)\ 40$
12. Soal UNBK Matematika IPA 2018 (👊 Soal Lengkap 👊)
Banyak bilangan terdiri dari angka berlainan antara $100$ dan $400$ yang dapat disusun dari angka-angka $1,\ 2,\ 3,\ 4,\ 5$ adalah...
$(A)\ 36$
$(B)\ 48$
$(C)\ 52$
$(D)\ 60$
$(E)\ 68$
Bilangan yang akan kita susun adalah bilangan yang terdiri dari $3$ angka beda dintara $100$ dan $400$, berarti yang bisa menjadi ratusan hanya angka $1,\ 2,\ \text{dan}\ 3$.
Banyak angka jadi ratusan ada $3$,
Banyak angka jadi puluhan ada $4$,
Banyak angak jadi satuan ada $3$
Banyak bilangan adalah: $3 \times 4 \times 3=36$
$\therefore$ Pilihan yang sesuai $(A)\ 36$
13. Soal UNBK Matematika IPS 2018 (👊 Soal Lengkap 👊)
Seorang pedagang boneka gemar menata barang dagangannya sehingga nampak tersusun rapi, variatif, dan menarik pembeli. Dalam satu etalse, barang dengan tipe sama yang diperdagangkan adalah $3$ boneka warna merah, $4$ biru, dan $5$ kuning. Jika pedagang itu menata boneka-boneka tersebut dengan boneka kuning harus berdampingan, banyak cara menata ke-12 boneka adalah...
$(A)\ 280\ \text{cara}$
$(B)\ 560\ \text{cara}$
$(C)\ 720\ \text{cara}$
$(D)\ 2.720\ \text{cara}$
$(E)\ 5.440\ \text{cara}$
Banyak boneka adalah adalah $3$ boneka warna merah, $4$ biru, dan $5$ kuning.
Untuk menyusun boneka dengan syarat boneka kuning harus berdampingan, maka boneka kuning kita anggap "satu".
Banyak boneka yang akan disu Via : http://www.foldersoal.com
Belum ada Komentar untuk "Matematika Dasar Aturan Perkalian, Permutasi dan Kombinasi (👊 Soal dari Berbagai Sumber 👊)"
Posting Komentar