Sistem persamaan diatas mempunyai peneyelesaian $(p,q)$, sehingga kita harus mendapatkan nilai $p$ dan $q$ yang berturut-turut merupakan nilai $x$ dan $y$ dari sistem persamaan.
Pertama kita coba sederhanakan sistem persamaan. Persamaan pertama sudah berada pada bentuk yang paling sederhana, sehingga yang perlu kita sederhanakan adalah persamaan kedua;
$\begin{align}
^{3}log\ x^{2}\ -\ ^{4}log\ 4y^{2} &=1\\
2\ ^{3}log\ x\ -\ ^{2^{2}}log\ {(2y)}^{2} &=1\\
2\ ^{3}log\ x\ -\ \dfrac{2}{2}\ ^{2}log\ {2y} &=1\\
2\ ^{3}log\ x\ -\ ^{2}log\ {2y} &=1\\
2\ ^{3}log\ x\ -\ (^{2}log\ {2}+^{2}log\ {y}) &=1\\
2\ ^{3}log\ x\ -\ ^{2}log\ {2}-^{2}log\ {y} &=1\\
2\ ^{3}log\ x\ -^{2}log\ {y} &=2
\end{align}$
Sistem persamaan sekarang bisa kita tuliskan menjadi;
$\begin{align}
^{3}log\ x\ +\ ^{2}log\ y &=4\\
2\ ^{3}log\ x\ -\ ^{2}log\ y &=2\\
\end{align}$
Untuk mempermudah penulisan atau penyelesaian persamaan diatas, kita misalkan $^{3}log\ x\ =m$ dan $^{2}log\ y\ =n$. Dengan pemisalan ini sistem persamaan bisa kita tuliskan menjadi;
$\begin{align}
m\ +\ n\ &=4\\
2\ m\ -\ n\ &=2\\
\end{align} $
Dengan mengeliminasi atau mengsubstitusi sistem persamaan diatas, maka kita peroleh nilai $m=2$ dan $n=2$.
Untuk nilai $m=2$ maka $^{3}log\ x\ =2$ sehingga $x=3^{2}$
Untuk nilai $n=2$ maka $^{2}log\ y\ =2$ sehingga $y=2^{2}$
Nilai $p-q=9-4=5$
$\therefore$ Pilihan yang sesuai adalah $(C)\ 5$
Belum ada Komentar untuk "Matematika Dasar Logaritma (๐ Soal Dari Berbagai Sumber ๐)"
Posting Komentar